Abstract

Artificial reefs have significantly altered ecological and environmental conditions compared with natural reefs, but how these changes affect sediment bacteria structure and function is unknown. Here, we compared the structure and function of the sediment bacterial community in the artificial reef area, the future artificial reef area, and the control area in Bohai Bay by 16S rRNA genes sequencing. Our results indicated that bacteria communities in the sediment were both taxonomically and functionally different between the reef area and control area. In the artificial reef area, the α-diversity was significantly lower, whereas the β-diversity was significantly higher. Functional genes related to chemo-heterotrophy, nitrate reduction, hydrocarbon degradation, and the human pathogens and human gut were more abundant, whereas genes related to the metabolism of sulfur compounds were less abundant in the artificial reef than in the control area. The differences in bacterial communities were primarily determined by depth in the artificial reef area, and by total organic carbon in the future reef area and control area. This study provides the first overview of molecular ecology to assess the impacts of artificial reefs on the bacteria community.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.