Abstract

Artificial mixing and oxygenation induced by water-lifting aerations (WLAs) have the potential to improve water quality in reservoirs. However, there is a limited understanding of the bacterial community composition, assembly, and mechanisms behind water quality improvement under the influence of WLAs, especially in a water transfer reservoir. Here, the dynamics and relationship between water quality, bacterial diversity, and composition during the pre-operation, in-operation, and post-operation stages of WLAs were analyzed using high-throughput sequencing technology to explore the effects of artificially regulated bacteria on water quality improvement. WLAs operation led to the elimination of water stratification, significant bottom oxygenation, and reduction in nutrient concentrations. In addition, the operation of WLAs significantly changed the bacterial community composition, with an increase in richness, negligible difference in diversity, and a significant increase in the abundance of species with pollutant degradation functions, resulting in a shift from stochastic to deterministic processes of the bacterial community assembly. As a result, enhancement of the dominant bacteria responsible for organic matter degradation and denitrification and suppression of the emergence of algae-related bacteria were observed during the WLAs operation, and the ecosystem stability improved. Multiple analyses indicated a direct correlation between artificial mixing and oxygenation; changes in the bacterial community; and the reduction of nitrogen, phosphorus, and permanganate index in the water column. This study provides novel insights into in situ water quality enhancement and a valuable reference for understanding bacterial change patterns under artificially intervened conditions in water transfer reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call