Abstract
The underlying mechanisms of arsenic carcinogenicity are still not fully understood. Mechanisms currently discussed include the induction of oxidative DNA damage and the interference with DNA repair pathways. Still unclear is the role of biomethylation, which has long been considered to be one major detoxification process. Methylated arsenicals have recently been shown to interfere with DNA repair in cellular and subcellular systems, but up to now no DNA repair protein has been identified being particular sensitive towards methylated arsenicals in cultured cells. Here we report that the trivalent methylated metabolites MMA(III) and DMA(III) inhibit poly(ADP-ribosyl)ation in cultured human HeLa S3 cells at concentrations as low as 1 nM, thereby showing for the first time an inactivation of an enzymatic reaction related to DNA repair by the trivalent methylated arsenicals at very low environmentally relevant concentrations. In contrast the pentavalent metabolites MMA(V) and DMA(V) showed no such effects up to high micromolar concentrations. All investigated arsenicals did not alter gene expression of PARP-1. However, all trivalent arsenicals were able to inhibit the activity of isolated PARP-1, indicating that the observed decrease in poly(ADP-ribosyl)ation in cultures human cells, predominantly mediated by PARP-1, is likely due to changes in the activity of PARP-1. Since poly(ADP-ribosyl)ation plays a major role in DNA repair, cell cycle control and thus in the maintenance of genomic stability, these findings could in part explain DNA repair inhibition and the genotoxic and carcinogenic effects of arsenic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.