Abstract

Earthworms and arbuscular mycorrhizal fungi (AMF) modify soil physical and chemical properties. However, little is known about how their interactions affect water-stable aggregation, glomalin and crop performance. A greenhouse experiment was run for 9 months to test the effects of earthworms (endogeic, Pontoscolex corethrurus; and epigeic, Dichogaster bolaui) and AMF (none, Glomus etunicatum and Scutellospora verrucosa) on water-stable aggregation, glomalin levels in aggregate size classes and crop performance. The test crop was pigeonpea (Cajanus cajan (L.) Millsp.). The soil material used for the experiment was a humic nitisol from central Kenya mixed with sand (ratio 1:1). Grass residue (equivalent to 20tha–1) was placed on top. The AMF root colonisation and external hyphal length, water-stable macroaggregates and microaggregates, total and easily-extractable glomalin in aggregate size classes, plant biomass and plant N and P uptake were measured. Earthworms were a major source of variation for soil aggregation, glomalin content and crop performance. The epigeic earthworms (D. bolaui) increased the amount of water-stable macroaggregates (by 10%) and glomalin in microaggregates and improved crop (growth and biomass) performance. The endogeic earthworms (P. corethrurus) reduced external hyphal length, root colonisation and crop performance but had no effect on water-stable aggregates and glomalin levels in in aggregate size classes. A significant AMF×earthworm interaction was observed for plant biomass and concentrations of nitrogen (N) and phosphorus (P). The AMF species together with epigeic earthworms increased plant biomass and N and P concentrations. Our results contribute to the understanding of interactions between AMF and earthworms in relation to soil aggregation, plant productivity and nutrient uptake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.