Abstract
Aortic valve stenosis (AS) induces compensatory alterations in left ventricular hemodynamics, leading to physiological and pathological alterations in coronary hemodynamics. Relief of AS by transcatheter aortic valve implantation (TAVI) decreases ventricular afterload and is expected to improve microvascular function immediately. We evaluated the effect of AS on coronary hemodynamics and the immediate effect of TAVI. Intracoronary pressure and flow velocity were simultaneously assessed at rest and at maximal hyperemia in an unobstructed coronary artery in 27 patients with AS before and immediately after TAVI and in 28 patients without AS. Baseline flow velocity was higher and baseline microvascular resistance was lower in patients with AS as compared with controls, which remained unaltered post-TAVI. In patients with AS, hyperemic flow velocity was significantly lower as compared with controls (44.5±14.5 versus 54.3±18.6 cm/s; P=0.04). Hyperemic microvascular resistance (expressed in mm Hg·cm·s(-1)) was 2.10±0.69 in patients with AS as compared with 1.80±0.60 in controls (P=0.096). Coronary flow velocity reserve in patients with AS was lower, 1.9±0.5 versus 2.7±0.7 in controls (P<0.001). Improvement in coronary hemodynamics after TAVI was most pronounced in patients without post-TAVI aortic regurgitation. In these patients (n=20), hyperemic flow velocity increased significantly from 46.24±15.47 pre-TAVI to 56.56±17.44 cm/s post-TAVI (P=0.003). Hyperemic microvascular resistance decreased from 2.03±0.71 to 1.66±0.45 (P=0.050). Coronary flow velocity reserve increased significantly from 1.9±0.4 to 2.2±0.6 (P=0.009). The vasodilatory reserve capacity of the coronary circulation is reduced in AS. TAVI induces an immediate decrease in hyperemic microvascular resistance and a concomitant increase in hyperemic flow velocity, resulting in immediate improvement in coronary vasodilatory reserve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.