Abstract
A novel system model is proposed for the dual-hop multiple-input multiple-output amplify-andforward relay networks, and the impact of antenna correlation on the performance is studied. For a semiarbitrary correlated source-relay channel and an arbitrary correlated relay-destination channel, the complementary cumulative distribution function (CCDF) and the moment-generating function (MGF) approximations of the end-to-end signal-to-noise ratio (SNR) are derived. The outage probability, the average symbol error rate (SER), and the ergodic capacity approximations are also derived. Two special cases are treated explicitly: (1) dual-antenna relay and multiple-antenna destination and (2) uncorrelated antennas at the relay and correlated antennas at the destination. For the first case, the CCDF, the MGF and the average SER of an upper bound of the end-to-end SNR are derived in closed-form. For the second case, the CCDF, the MGF, the average SER, and the moments of SNR are derived in closed-form; as well, the high SNR approximations for the outage probability and the average SER are derived, and the diversity gain and coding gain are developed. Extensive numerical results and Monte Carlo simulation results are presented to verify the analytical results and to quantify the detrimental impact of antenna correlations on the system performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: EURASIP Journal on Wireless Communications and Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.