Abstract

Geoelectrical methods can be part of early warning systems for landslide-prone hillslopes by giving estimates of the water content distribution. Structurally constrained inversions of geoelectrical data can improve the water content estimation by reducing the smoothness constraint along known lithological boundaries, which is especially important for landslides, as often layers with strongly divergent hydrological parameters and varying electrical signatures are present in landslides. However, any a priori information about those boundaries has an intrinsic uncertainty. A detailed synthetic study and a field investigation are combined to study the influence of misplaced structural constraints and the strength of the smoothness reduction via a coupling coefficient on inversion results of electrical resistivity data. While a well-known lithological boundary with a substantial reduction of the smoothness constraint can significantly improve the inversion result, a flawed constraint can cause strong divergences from the synthetic model. The divergence can even grow above the divergence of a fully smoothed inversion result. For correctly placed structural constraints, a coupling coefficient smaller than 10−4 uncovers previously unseen dynamics in the resistivity distribution compared to smoothed inversion results. Uncertain layer boundaries can be included in the inversion process with a larger coupling coefficient to avoid flawed results as long as the uncertainty of the layer thickness is below 20%. The application to field data confirms these findings but is less sensitive to a further reduction of the coupling coefficient, probably due to uncertainties in the structural information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.