Abstract

The development of smart grids requires the active participation of end users through demand response mechanisms to provide technical benefits to the distribution network and receive economic savings. Integrating advanced machine learning tools makes it possible to optimise the network and manage the mechanism to maximise the benefits. This paper proceeds by forecasting consumption for the next 24 h using a recurrent neural network and by processing these data using a reinforcement learning-based optimisation model to identify the best demand response policy. The model is tested in a real environment: a portion of the Terni electrical distribution network. Several scenarios were identified, considering users’ participation at different levels and limiting the potential with various constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.