Abstract

When Bacillus stearothermophilus α-amylase (BStA), Pseudomonas saccharophila α-amylase (PSA), or Bacillus subtilis α-amylase (BSuA) was added to a bread recipe to impact bread firming, amylose crystal formation was facilitated, leading to lower initial crumb resilience. Bread loaves that best retained their quality were those obtained when BStA was used. The enzyme hindered formation of an extended starch network, resulting in less water immobilization and smaller changes in crumb firmness and resilience. BSuA led to extensive degradation of the starch network during bread storage with release of immobilized water, eventually resulting in partial structure collapse and poor crumb resilience. The most important effect of PSA was an increased bread volume, resulting in smaller changes in crumb firmness and resilience. A negative linear relation was found between NMR proton mobilities of water and biopolymers in the crumb and crumb firmness. The slope of that relation gave an indication of the strength of the starch network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call