Abstract

Background:Altered pattern of respiration has been shown to affect both the cardiac as well as cortical activity, which is the basis of central–autonomic dual interaction concept. On the other hand, effect of this association between altered breathing with slow cortical activity, that is, electroencephalography (EEG) theta waves (associated with learning and relaxed alertness) on the cardiac autonomic balance is largely unclear.Objective:The study aims to understand this interaction in response to altered respiratory patterns, for example, voluntary apnea, bradypnea, and tachypnea in terms of EEG and heart rate variability (HRV) correlates in normal healthy subjects.Methods:This study was conducted on 32 adult male subjects. EEG from F3, F4, P3, P4, O1 and O2 cortical areas and Lead II electrocardiography for HRV analysis was continuously recorded during aforesaid respiratory interventions. Power spectral analysis of EEG for theta waves and HRV measures, that is, RMSSD, pNN50, HF, LF, and LF/HF was calculated as % change taking resting value as 100%.Results:Apnea caused decrease in theta power, whereas an increase in LF/HF was observed in HRV. Bradypnea on the other hand, did not elicit any significant change in power of theta waves. However, decreased RMSSD and pNN50 were observed in HRV. Tachypnea led to increase in theta power with HRV depicting significantly decreased RMSSD and pNN50. Besides, significant correlation between EEG and HRV measures was found during tachypnea, which shifted toward posterior cortical sites as compared to resting condition.Conclusion:Various altered respiratory patterns caused either depressed parasympathetic or increased sympathetic output, whereas increased theta power along with posterior shift of correlation between theta power and HRV measures observed during post tachypnea might be due to involvement of global brain areas due to respiration-coupled neuronal activity. Thus, a definite link between cortical activity and autonomic output in relation to altered respiratory patterns may be suggested.

Highlights

  • All preintervention resting EEG and heart rate variability (HRV) values have been expressed as standard units, whereas postintervention data are expressed as % change, resting values being taken as 100%

  • All postintervention measures of theta power and HRV are calculated in the first 2 minutes of intervention to see the immediate effect of the various respiratory patterns

  • These cortical activities were found to be bilaterally symmetrical, that is, there was no significant difference between absolute theta power at left (F3, P3, and O1) and right (F4, P4, and O2) sided leads

Read more

Summary

Introduction

Objective:The study aims to understand this interaction in response to altered respiratory patterns, for example, voluntary apnea, bradypnea, and tachypnea in terms of EEG and heart rate variability (HRV) correlates in normal healthy subjects. Power spectral analysis of EEG for theta waves and HRV measures, that is, RMSSD, pNN50, HF, LF, and LF/HF was calculated as % change taking resting value as 100%. Conclusion:Various altered respiratory patterns caused either depressed parasympathetic or increased sympathetic output, whereas increased theta power along with posterior shift of correlation between theta power and HRV measures observed during post tachypnea might be due to involvement of global brain areas due to respiration-coupled neuronal activity. A definite link between cortical activity and autonomic output in relation to altered respiratory patterns may be suggested

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call