Abstract
In this study, the effect of alloying elements on the adsorption and dissociation behaviors of hydrogen molecules on the bcc-Fe (001) surface has been investigated using first-principles calculations. H2 molecules can easily dissociate on the hollow site, and the dissociated hydrogen atoms bond with the surrounding metal atoms. Doping Cr and Mo atoms on the surface would reduce the H2 molecule adsorption energy, which promotes the H2 molecule adsorption and dissociation. When only one or two Ni atoms doping on the surface, it improves the adsorption energies, which in turn can hinder the H2 molecule adsorption and dissociation. However, three or four Ni atoms doping on the surface is beneficial to the H2 molecule adsorption and dissociation. Thus, the nickel content in Ni–Cr–Mo steel should be reasonably controlled to improve the hydrogen embrittlement resistance of the steel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.