Abstract

The increase of environmental issues awareness has accelerated the utilization of renewable resources like plant fiber to be used as reinforced material in polymer composite. However, there are significant problems of compatibility between the fiber and the matrix due to weakness in the interfacial adhesion of the natural fiber with the synthetic matrices. One of the solutions to overcome this problem is using chemical modification like alkali treatment. In this study, the impact of alkali treatment conditions on short randomly oriented kenaf fiber reinforced polyester matrix composite tensile strength was investigated. The experimental design setting was based on 2 level factorial experiments. Two parameters were selected during alkali treatment process which are kenaf fiber immersion duration (at 30 minute and 480 minute) and alkali solution temperature (at 40°C and 80°C). Alkali concentration was fixed at 2% (w/v) and the kenaf polyester volume fraction ratio was 10:90. The composite specimens were tested to determine the tensile properties according to ASTM D638-10 Type I. JOEL scanning electron microscopy (SEM) was used to study the microstructure of the material. The result showed that alkali treatment conditions setting do have the impact on tensile strength of short randomly oriented kenaf polyester composite. The interaction factors between immersion time and temperature was found to have prominent factors to the tensile strength of composite followed by the immersion time factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.