Abstract

Transition metal dichalcogenide (TMD) materials have emerged as promising candidates for thin-film solar cells due to their wide bandgap range across the visible wavelengths, high absorption coefficient, and ease of integration with both arbitrary substrates and conventional semiconductor technologies. However, reported TMD-based solar cells suffer from relatively low external quantum efficiencies (EQE) and low open circuit voltage due to unoptimized design and device fabrication. This paper studies Pt/WSe2 vertical Schottky junction solar cells with various WSe2 thicknesses in order to find the optimum absorber thickness. Also, we show that the devices' photovoltaic performance can be improved via Al2O3 passivation, which increases the EQE up to 29.5% at 410 nm wavelength incident light. The overall resulting short circuit current improves through antireflection coating, surface doping, and surface trap passivation effects. Thanks to the Al2O3 coating, this work demonstrates a device with an open circuit voltage (VOC) of 380 mV and a short circuit current density (JSC) of 10.7 mA/cm2. Finally, the impact of Schottky barrier height inhomogeneity at the Pt/WSe2 contact is investigated as a source of open circuit voltage lowering in these devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.