Abstract

Li and Mn-rich positive electrode materials, Li[LixTM1−x]O2 (TM = Ni, Co, and Mn), with a single-phase layered structure have been considered for use in next-generation Li-ion batteries for electric vehicles and many advanced applications. Despite their high specific capacity >250 mAh g−1, the commercialization of these materials is hindered by poor rate capability and voltage decay originating from transition metal migration to the lithium layer. Herein, the effect of aluminum doping and aluminum oxide surface coating on the structural and electrochemical performances of Co-free Li1.11Ni0.33Mn0.56O2 was studied. All synthesized materials were single phase with a similar morphology and amount of Ni in the Li layers. Even though the discharge capacity and capacity retention were slightly improved, there was no significant impact of the addition of Al on the rate of voltage fading during charge-discharge cycling as previously reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.