Abstract

Air pollution from greenhouse gases and atmospheric aerosols are the major driving force of climate change that directly alters the terrestrial hydrological cycle and ecosystem functions. However, most current Global Climate Models (GCMs) use prescribed chemical concentrations of limited species; they do not explicitly simulate the time-varying concentrations of trace gases and aerosols and their impacts on climate change. This study investigates the individual and combined impacts of climate change and air pollution on water availability and ecosystem productivity over the conterminous US (CONUS). An ecohydrological model is driven by multiple regional climate scenarios with and without taking into account the impacts of air pollutants on the climate system. The results indicate that regional chemistry-climate feedbacks may largely offset the future warming and wetting trends predicted by GCMs without considering air pollution at the CONUS scale. Consequently, the interactions of air pollution and climate change are expected to significantly reduce water availability by the middle of twenty-first century. On the other hand, the combined impact of climate change and air pollution on ecosystem productivity is less pronounced, but there may still be notable declines in eastern and central regions. The results suggest that air pollution could aggravate regional climate change impacts on water shortage. We conclude that air pollution plays an important role in affecting climate and thus ecohydrological processes. Overlooking the impact of air pollution may cause evident overestimation of future water availability and ecosystem productivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call