Abstract
The environmental footprint of agricultural production can vary significantly both between countries and within a country based on regional conditions and agricultural practices. A life cycle assessment approach was used to model primary fossil fuel energy inputs and greenhouse gas emissions associated with the production of sugarcane in South Africa. Results were calculated for sugarcane produced in two distinct regions, the irrigated North and the non-irrigated North Coast. Regional differences also include terrain, soil, and use of mechanization. Models were adapted to estimate the impacts of burning prior to harvest, leaving a biomass mulch blanket with green cane harvesting, and increasing the level of mechanization for harvest and other field operations. Irrigation contributes to a higher energy input in the irrigated North but differences are mitigated by the lower fertilizer, agro-chemical, and diesel use per ton of sugarcane produced there. Despite higher energy inputs in the irrigated North, greenhouse gas emissions are similar for sugarcane produced in each region. Green cane harvesting reduces energy inputs and greenhouse gas emissions by 4% and 16%, respectively, in both regions. Impacts of mechanization on soil compaction and stool damage result in lower yields and proportionally higher energy inputs and greenhouse gas emissions. Results demonstrate the potential for variability in LCA results based on regional differences in production practices within a country.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.