Abstract

Regarding aerosol particle-laded turbid atmospheres, full-sky background radiation polarization patterns can be adversely affected, an important factor limiting their effective near-ground observation and acquisition. We established a multiple-scattering polarization computational model and measurement system and conducted the following three tasks. (a) We thoroughly analyzed the impact of aerosol scattering characteristics on polarization distributions, calculating the degree of polarization (DOP) and angle of polarization (AOP) patterns for a more comprehensive set of atmospheric aerosol compositions and aerosol optical depth (AOD) values than calculated in previous studies. (b) We assessed the uniqueness of the DOP and AOP patterns as a function of AOD. (c) By employing a new polarized radiation acquisition system for measurements, we demonstrated that our computational models are more representative of the DOP and AOP patterns under actual atmospheric conditions. We found that under a clear sky without clouds, the impact of the AOD on the DOP was detectable. With increasing AOD, the DOP decreased, and the decreasing trend became increasingly obvious. When the AOD was above 0.3, the maximum DOP did not exceed 0.5. The AOP pattern did not change notably and remained stable, except for the contraction point at the sun position under an AOD of 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.