Abstract

The classical theory of lubrication holds that the lubricant dynamic viscosity increments cause the increments of hydrodynamic pressure, as well as friction forces and wear. In the case of high values of hydrodynamic pressure, it very often has a significant impact on the friction coefficient. New achievements in the field of micro-and nano-tribology provide for new hypotheses on the decrements and increments of the friction coefficient in the case of the lubricant viscosity increments. Experimental investigations have shown that, even in the case of decrements of the friction coefficient with the lubricant viscosity increments, such decrements are very often lower than simultaneous hydrodynamic pressure increments which results in the friction force increments with the lubricant viscosity increments. In biological friction nods, we can observe a varied impact of the biological lubricant viscosity on the friction force and friction coefficient values. The abovementioned impact is caused by the adhesion and cohesion forces occurring between the biological fluid particles flowing around the phospholipid bilayer on the superficial layer of the cartilage with varied wettability and hydrogen ion concentration. The wettability (We) and power hydrogen ion concentration (pH) have a significant impact on the physiological fluid or biological lubricant viscosity variations and, as a result, on the friction forces and friction coefficient. This paper describes the abovementioned impact and the process of friction forces and friction coefficients variations in biological friction nods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call