Abstract

Accumulation of triglyceride in islets may contribute to the loss of glucose-stimulated insulin secretion (GSIS) in some forms of type 2 diabetes (Diraison et al., Biochem J 373:769-778, 2004). Here, we use adenoviral vectors and oligonucleotide microarrays to determine the effects of the forced expression of SREBP1c on the gene expression profile of rat islets. Sterol regulatory element binding protein-1c (SREBP1c) overexpression led to highly significant (P <0.1 with respect to null adenovirus) changes in the expression of 1,238 genes or expressed sequence tags, of which 1,180 (95.3%) were upregulated. By contrast, overexpression of constitutively active AMP-activated protein kinase (AMPK), expected to promote lipolysis, altered the expression of 752 genes, of which 702 (93%) were upregulated. To identify specific targets for SREBP1c or AMPK, we eliminated messages that were 1) affected in the same direction by the expression of either protein, 2) changed by less than twofold, or 3) failed a positive false discovery test; 206 SREBP1c-regulated genes (195; 95% upregulated) and 48 AMPK-regulated genes (33; 69% upregulated) remained. As expected, SREBP1c-induced genes included those involved in cholesterol (6), fatty acid (3), and eicosanoid synthesis. Interestingly, somatostatin receptor (sstr1) expression was increased by SREBP1c, whereas AMPK induced the expression of peptide YY, the early endocrine pancreas marker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.