Abstract
We consider the combined effects of active dendrites and structural plasticity on the storage capacity of neural tissue. We compare capacity for two different modes of dendritic integration: (1) linear, where synaptic inputs are summed across the entire dendritic arbor, and (2) nonlinear, where each dendritic compartment functions as a separately thresholded neuron-like summing unit. We calculate much larger storage capacities for cells with nonlinear subunits and show that this capacity is accessible to a structural learning rule that combines random synapse formation with activity-dependent stabilization/elimination. In a departure from the common view that memories are encoded in the overall connection strengths between neurons, our results suggest that long-term information storage in neural tissue could reside primarily in the selective addressing of synaptic contacts onto dendritic subunits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.