Abstract

Selective isomerization of 1-methylnaphthalene was carried out in a fixed-bed reactor over HBEA catalysts modified by acid and tetraethoxysilane treatments, respectively. Catalysts were characterized by X-ray diffraction, NH3 temperature-programmed desorption, N2 physisorption, inductively coupled plasma analysis, thermogravimetric analysis and Fourier transform infrared spectrometry after adsorption of pyridine. The results demonstrated that tetraethoxysilane treatment successfully passivated external active sites of the zeolite, but had little effect on the selectivity of isomerization reaction and catalytic stability. Dealumination of HBEA zeolite by treatment with oxalic and hydrochloric acids can lead to higher surface area and pore volume. Sufficiently strong Bronsted acidic sites were found to be responsible for the isomerization activity. Furthermore, a decrease in the number of Lewis acidic sites in acid-modified zeolites were advantageous to suppress the hydride transfer and subsequent side reactions that form coke, leading to higher 2-methylnaphthalene selectivity and longer catalytic life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.