Abstract

ObjectivesThe objective of this study was to evaluate the effect of acidic beverages on the surface topography and elemental composition of human teeth.MethodsA total of five highly acidic beverages (Red Bull, Pepsi, Apple Cidra, Tang Mosambi, and Tang Orange) were investigated. The tooth specimens of experimental groups were submerged in each beverage and incubated at 37 °C for 7 days, whereas, the tooth specimens of control groups were placed in distilled water. Afterwards, tooth specimens were analyzed using scanning electron microscopic (SEM), stereomicroscopic, and energy dispersive x-ray (EDX) techniques.ResultsAll experimental groups revealed a decline in the tooth elements compared to controls, however, such decline was not statistically significant. Nevertheless, comparing the experimental groups, the Red Bull beverage caused a marked reduction in the percentage of both calcium and phosphorus elements compared to the Pepsi, Apple Cidra, Tang Mosambi, and Tang Orange beverages but it was insignificant as well in contrast to its control counterpart. All five acidic beverages demonstrated erosive potential under SEM analysis; however, each group of specimens showed a diverse amount of demineralization. In addition, all experimental groups exhibited significant discoloration of tooth specimens compared to their respective control counterparts.ConclusionsWithin the limitations of study, all five acidic beverages demonstrated erosive potential in the simulated in vitro conditions under SEM analysis; however, each group of specimens exhibited a different extent of demineralization. In addition, the overall effect of all beverages was insignificant under EDX analysis as no substantial difference was revealed between the elemental composition of experimental and control group specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.