Abstract

B chromosomes are centric chromosomal fragments present in thousands of eukaryotic genomes. Because most B chromosomes are non-essential, they can be lost without consequence. In order to persist, however, some B chromosomes can impose strong forms of intra-genomic conflict. An extreme case is the paternal sex ratio (PSR) B chromosome in the jewel wasp Nasonia vitripennis. Transmitted solely via the sperm, PSR 'imprints' the paternal chromatin so that it is destroyed during the first mitosis of the embryo. Owing to the haplo-diploid reproduction of N. vitripennis, PSR-induced loss of the paternal chromatin converts embryos that should become females into PSR-transmitting males. This conversion is key to the persistence of PSR, although the underlying mechanisms are largely unexplored. We assessed how PSR affects the paternal chromatin and then investigated how PSR is transmitted efficiently at the cellular level. We found that PSR does not affect progression of the paternal chromatin through the cell cycle but, instead, alters its normal Histone H3 phosphorylation and loading of the Condensin complex. PSR localizes to the outer periphery of the paternal nucleus, a position that we propose is crucial for it to escape from the defective paternal set. In sperm, PSR consistently localizes to the extreme anterior tip of the elongated nucleus, while the normal wasp chromosomes localize broadly across the nucleus. Thus, PSR may alter or bypass normal nuclear organizational processes to achieve its position. These findings provide new insights into how selfish genetic elements can impact chromatin-based processes for their survival.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call