Abstract

The operation of onsite septic effluent disposal without considering seasonal moisture changes in drain field conditions can be a major cause of the failure of conventional septic systems. This study addressed this issue from a soil hydraulic perspective by using real-time drain field soil moisture levels to limit septic effluent disposal in a vertisol via subsurface drip irrigation. A prototype system was field-tested in a Houston clay soil and results describe the subsequent impact on selected soil chemical properties. After one year of hydraulic dosing with a synthetic wastewater, soil total carbon and nitrogen concentrations increased, but no increase in soil total phosphorus concentration was observed. Soil NO3-N leaching potential was noted, but soil NH4-N concentrations decreased, which could be ascribed to NH4-N nitrification, fixation within clay sheets and NH3 volatilization. Soil K+, Mg2+ and Na+ concentrations increased in soil layers above the drip lines, but decreased in soil layers below drip lines. Soil electrical conductivity accordingly increased in soil layers above drip lines, but the range was significantly lower than the threshold for soil salinity. Although the moisture-controlled effluent disposal strategy successfully avoided hydraulic dosing during unfavourable wet drain field conditions and prevented accumulation of soil salts in the soil profile beneath the drip lines, soil salts tended to accumulate in top soil layers. These adverse effects warrant system corrections before large-scale implementation of subsurface drip irrigation of effluent in similar vertisols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.