Abstract

Rickettsia consists of some of the most prevalent symbionts of insects and often plays a significant role in the biology of its hosts. Recently, a maternally inherited Torix group Rickettsia, provisionally named as RiTBt, was recorded in a species of notorious pest whitefly, tentatively named as Asia II 1, from the Bemisia tabaci complex. The role of this Rickettsia in the biology of its host is unknown. Here we investigated the impact of RiTBt on the performance and virus transmission capacity of Asia II 1. RiTBt did not significantly affect the life history parameters of the whitefly when the host insect was reared on tobacco, tomato, and cotton, three host plants with relatively low, medium and high suitability to the whitefly. Intriguingly, RiTBt slightly enhanced whitefly transmission of cotton leaf curl Multan virus (CLCuMuV), a virus that is transmitted by the whitefly in the field and has caused extensive damage to cotton production. Specifically, compared with whiteflies without RiTBt, following a 48 h virus acquisition whiteflies with RiTBt had higher titer of virus and showed higher efficiency of virus transmission. A rickettsial secretory protein BtR242 was identified as a putative virus-binding protein, and was observed to interact with the coat protein of CLCuMuV in vitro. Viral infection of the whitefly downregulated gene transcript levels of the BtR242 gene. These observations indicate that RiTBt has limited impact on the biology of the Asia II 1 whitefly, and whether this symbiont has functions in the biology of other host whiteflies warrants future investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call