Abstract
AbstractLarge artificial lakes and reservoirs affect the meteorological regime of the shore area and the local climate takes on a number of new features that were previously absent. This work focuses on the weather impact of the Alqueva reservoir, the largest artificial lake in Western Europe. An extensive set of numerical simulations using Meso‐NH mesoscale atmospheric model coupled with FLake (Freshwater Lake) scheme was carried out. The simulations covered a 12‐month period that was chosen to compose a so‐called Typical Meteorological Year. This artificial time period is meant to represent the typical meteorological conditions in the region and the model results are used to assess the changes in the local climate. To evaluate the raw impact of the reservoir, two different scenarios of simulations were compared: (A) with the reservoir as it exists nowadays and (B) without the reservoir using the older surface dataset. The results show decrease of air temperature during daytime (10–9°C) and nighttime increase (up to 10°C). In nearest towns, daily maximum temperature decreased and daily minimum temperature increased, which refers to milder weather conditions. Alqueva mainly showed suppression in fog formation in the nearby area. Local breeze regime was studied and monthly lake/land breezes were described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.