Abstract

Overcoming terrain obstacles presents a major problem for people with disabilities or with limited mobility who are dependent on wheelchairs. An engineering solution designed to facilitate the use of wheelchairs are assisted-propulsion systems. The objective of the research described in this article is to analyze the impact of the hybrid manual–electric wheelchair propulsion system on the kinematics of the anthropotechnical system when climbing hills. The tests were carried out on a wheelchair ramp with an incline of 4°, using a prototype wheelchair with a hybrid manual–electric propulsion system in accordance with the patent application P.427855. The test subjects were three people whose task was to propel the wheelchair in two assistance modes supporting manual propulsion. The first mode is hill-climbing assistance, while the second one is assistance with propulsion torque in the propulsive phase. During the tests, several kinematic parameters of the wheelchair were monitored. An in-depth analysis was performed for the amplitude of speed during a hill climb and the number of propulsive cycles performed on a hill. The tests performed showed that when propelling the wheelchair only using the hand rims, the subject needed an average of 13 ± 1 pushes on the uphill slope, and their speed amplitude was 1.8 km/h with an average speed of 1.73 km/h. The climbing assistance mode reduced the speed amplitude to 0.76 km/h. The torque-assisted mode in the propulsive phase reduced the number of cycles required to climb the hill from 13 to 6, while in the climbing assistance mode the number of cycles required to climb the hill was reduced from 12 to 10 cycles. The tests were carried out at various values of assistance and assistance amplification coefficient, and the most optimally selected parameters of this coefficient are presented in the results. The tests proved that electric propulsion assistance has a beneficial and significant impact on the kinematics of manual wheelchair propulsion when compared to a classic manual propulsion system when overcoming hills. In addition, assistance and assistance amplification coefficient were proved to be correlated with operating conditions and the user’s individual characteristics.

Highlights

  • The main problem faced by disabled people using wheelchairs are terrain obstacles, either architectural or natural ones, such as thresholds, hills, or surface irregularities

  • The starting points for the hill climb (SC), the starting points for the assistance mode (SA) and the end points for the hill climb (END) are marked

  • The conducted tests allowed the researchers to determine that the use of hybrid propulsion systems has a positive impact on the kinematics of the wheelchair and the human body

Read more

Summary

Introduction

The main problem faced by disabled people using wheelchairs are terrain obstacles, either architectural or natural ones, such as thresholds, hills, or surface irregularities. All these factors translate into increased resistance during wheelchair propulsion. To facilitate wheelchair propulsion for people with disabilities, scientists and inventors are developing innovative design solutions for suspension systems, propulsion systems, etc. An innovation in the field of wheelchair propulsion systems are wheelchairs with electric–manual hybrid propulsion systems that allow people with. Sci. 2020, 10, 1025 disabilities to manually propel the wheelchair and use the support of the drive torque generated by electric motors. It allows them to increase their traveling distance [2], and facilitates tasks requiring increased torque on the propulsion wheels [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.