Abstract

This study aims to evaluate the curing time minimally required for bonding stainless-steel (SS) brackets using a high-power light-emitting diode (LED) light curing unit (LCU) and examine the debonded enamel surface for adhesive remnant. Based on the LED LCU and curing time employed, 80 human maxillary first premolar teeth were equally segregated into four groups. Three groups were cured using a high-power LED unit (Guilin Woodpecker Medical Instrument Co., Ltd., Guilin, Guangxi, China) for one, two, and three seconds. The fourth group served as a control and was bonded with another intensive LED unit (Elipar™ S10 LED Curing Light; 3M, Saint Paul, Minnesota, United States) for 20 seconds. Transbond™ XT Light Cure Adhesive (3M, United States) adhesive was used for bonding the SS brackets. All the samples were exposed to shear bond strength (SBS) testing after a 24-hour immersion period in distilled water at 37°C. A stereomicroscope was used to examine and score the adhesive remnant on the debonded surface using a modified adhesive remnant index (ARI). Kruskal-Wallis-ANOVA and post-hoc Mann-Whitney U tests for multiple pairwise comparisons were performed to analyze the data. Time and intensity significantly affected the SBS (P<0.001). A higher SBS value (16.04 megapascals (MPa)) was obtained in the six-second group when compared to the three-second (11.58 MPa), one-second (10.69 MPa), and 20-second control (13 MPa) groups. The ARI was significantly affected by the curing method. Higher SBSs were recorded for the six-second group using the high-power LED. A greater ARI score is associated with a reduced curing duration and vice versa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call