Abstract

For any oblique sample movement containing a transverse velocity component, the commonly used linear relationship between the phase shift and the axial velocity component is erroneous for spectrometer-based optical coherence tomography (spectral domain OCT, SD-OCT). We recently proposed a new Doppler model that assumes a continuous integration of the photocurrent. In this research, we extend the model for detectors with a shutter control by taking detector dead time into account. We present the new relation between phase shift and oblique sample displacement as well as the correlation of the phases of consecutive depth scans, in dependency on the detector dead times ranging from 5% to 90%, as numerically calculated universal contour plots, which are valid for any center wavelength and sample beam size. We found that detector dead time is recommended, especially for oblique sample motion. The reason for this recommendation is the achieved linear relation between the phase shift and the axial velocity component in the velocity range relevant for in vivo measurements, despite the signal damping due to shorter exposure time of the line detector. The theoretical Doppler model is verified using a 1% Intralipid flow phantom model. Because of the results of this research, we believe future measurements in Doppler SD-OCT can be more simple and more accurate by setting a shutter control for the line detector used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.