Abstract

Herpesvirus genome maturation is a complex process in which concatemeric DNA molecules are translocated into capsids and cleaved at specific sequences to produce encapsidated-unit genomes. Bacteriophage studies further suggest that important ancillary processes, such as RNA transcription and DNA synthesis, concerned with repeat duplication, recombination, branch resolution, or damage repair may also be involved with the genome maturation process. To gain insight into the biochemical activities needed for herpesvirus genome maturation, 2-bromo-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole riboside (BDCRB) was used to allow the accumulation of human cytomegalovirus concatemeric DNA while the formation of new genomes was being blocked. Genome formation was restored upon BDCRB removal, and addition of various inhibitors during this time window permitted evaluation of their effects on genome maturation. Inhibitors of protein synthesis, RNA transcription, and the viral DNA polymerase only modestly reduced genome formation, demonstrating that these activities are not required for genome maturation. In contrast, drugs that inhibit both viral and host DNA polymerases potently blocked genome formation. Radioisotope incorporation in the presence of a viral DNA polymerase inhibitor further suggested that significant host-mediated DNA synthesis occurs throughout the viral genome. These results indicate a role for host DNA polymerases in genome maturation and are consistent with a need for terminal repeat duplication, debranching, or damage repair concomitant with DNA packaging or cleavage. Similarities to previously reported effects of BDCRB on guinea pig cytomegalovirus were also noted; however, BDCRB induced low-level formation of a supergenomic species called monomer+ DNA that is unique to human cytomegalovirus. Analysis of monomer+ DNA suggested a model for its formation in which BDCRB permits limited packaging of concatemeric DNA but induces skipping of cleavage sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.