Abstract

Nitrogen (N) fertilizer application and atmospheric N deposition will profoundly affect greenhouse gas (GHGs) emissions, especially nitrous oxide (N2O) and methane (CH4) fluxes and ecosystem respiration (Re, i.e. CO2 emissions). However, the impacts of long-term N inputs and the often associated N-induced soil acidification on GHG fluxes in arid and semi-arid ecosystems, especially temperate grasslands, are still uncertain. An in situ experiment was conducted to investigate the effect of long-term (13-years) N addition on N2O and CH4 fluxes and Re from a temperate grassland in Inner Mongolia, northeast China, from April 2017 to October 2018. Soil pH values in the 0–5 cm layer receiving 120 (N120) and 240 (N240) kg N ha−1 decreased from 7.12 to 4.37 and 4.18, respectively, after 13 years of N inputs. Soil CH4 uptake was significantly reduced, but N2O emission was enhanced significantly by N addition. However, N addition had no impact on Re. Structural Equation Modeling indicated that soil NH4+-N content was the dominant control of N2O emissions, but with less effect of the decreasing pH. In contrast, CH4 uptake was generally controlled by soil pH and NO3−-N content, and Re by forb biomass. The measured changes in N2O and CH4 fluxes and Re from temperate grassland will have a profoundly impact on climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call