Abstract

β-galactosidase (GLB1) forms a functional lysosomal multienzyme complex with lysosomal protective protein (PPCA) and neuraminidase 1 (NEU1) which is important for its intracellular processing and activity. Mutations in the β-galactosidase gene cause the lysosomal storage disease G M1-gangliosidosis. In order to identify additional molecular changes associated with the presence of β-galactosidase mutations, the expression of canine lysosomal multienzyme complex components in GLB1 +/+, GLB1 +/− and GLB1 −/− fibroblasts was investigated by quantitative RT-PCR, Western blot and enzymatic assays. Quantitative RT-PCR revealed differential regulation of total β-galactosidase, β-galactosidase variants and protective protein for β-galactosidase gene ( PPGB) in GLB1 +/− and GLB1 −/− compared to GLB1 +/+ fibroblasts. Furthermore, it was shown that PPGB levels gradually increased with the number of mutant β-galactosidase alleles while no change in the NEU1 expression was observed. This is the first study that simultaneously examine the effect of GLB1 +/+, GLB1 +/− and GLB1 −/− genotypes on the expression of lysosomal multienzyme complex components. The findings reveal a possible adaptive process in GLB1 homozygous mutant and heterozygous individuals that could facilitate the design of efficient therapeutic strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.