Abstract

α/γ-Peptide foldamers containing either γ(4)-amino acid residues or ring-constrained γ-amino acid residues have been reported to adopt 12-helical secondary structure in nonpolar solvents and in the solid state. These observations have engendered speculation that the seemingly flexible γ(4) residues have a high intrinsic helical propensity and that residue-based preorganization may not significantly stabilize the 12-helical conformation. However, the prior studies were conducted in environments that favor intramolecular H-bond formation. Here, we use 2D-NMR to compare the ability of γ(4) residues and cyclic γ residues to support 12-helix formation in more challenging environments, methanol and water. Both γ residue types support 12-helical folding in methanol, but only the cyclically constrained γ residues promote helicity in water. These results demonstrate the importance of residue-based preorganization strategies for achieving stable folding among short foldamers in aqueous solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.