Abstract

Microbial electrosynthesis systems (MESs) can convert carbon dioxide into added value compounds using microorganisms as catalyst, which is expected to help achieve conversion of greenhouse gases into resources. However, the synthetic efficiency of MESs is far behind the industry requirements. In this study, carbon cloth surfaces were bonded with carboxyl groups by electrochemical reduction of aryl diazonium salts and then used as a cathode in MESs reactors. The results showed that the hydrophilicity of the carbon cloth surfaces improved after the carboxyl groups were modified. However, weaker current of cyclic voltammetry was obtained in the modified cathode. Significant differences were observed between modified (CA-H, CA-M, CA-L) and non-modified cathode (CK) during the start-up period. After 48h, the hydrogen production rate of CA-H, CA-M, CA-L was 21.45, 28.60, and 22.75 times higher than CK. After 120h, the acetate accumulation concentration of CA-H, CA-M, CA-L was 2.01, 2.43, and 1.44 times higher than CK. After 324h, there was little difference in the electrochemical activity of cathodic biofilm and protein content (about 0.47 mg·cm-2) in all groups. The analysis of the community structure of cathodic biofilm showed that, in the genus level, Acetobacterium, Norank_p_Saccharibacteria, and Thioclava were the dominant species, accounting for 59.6% to 82.1%. There was little difference in the relative abundance of Acetobacterium in all groups (31.3% to 40.1%). However, the relative abundance of norank_p_Saccharibacteria in CA-H, CA-M, CA-L, and CK were 16.1%, 24.6%, 31.1%, and 37.5%, respectively. The carboxyl modified cathode had a great influence on the start-up stage of MESs, which could be a new idea for the rapid start-up of MESs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.