Abstract

In addressing the challenging issue of impact source localization for large-scale anisotropic stiffened compartmental cylindrical shell structures, this paper presents a novel impact localization method. The method is based on a time-reversal virtual focusing triangulation approach and does not rely on prior knowledge of the structure or specific measurements of wave velocity. By employing energy power filtering to select key sensors, wavelet packet decomposition is utilized to extract narrowband Lamb wave signals, which are then synthesized. Further enhancement of signal recognition is achieved through time-reversal amplification techniques. Experimental results demonstrate that under non-motorized operating conditions, this method achieves an average error of 0.89 m. Under motorized operating conditions, the average error is 1.12 m. Although the presence of background noise leads to an increase in error, the overall localization performance is superior to traditional triangulation methods. Additionally, selecting the top three sensors in terms of energy power ranking can more accurately record impact response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.