Abstract
A charged free carrier in an applied electric field may pick up enough energy from the field to allow it to impact ionize an excition. For this to occur, the carrier must have an energy greater than the exciton binding energy. At low temperatures (T<~10°K in Ge and T<~30°K in Si) and modest electric fields (E∼2 V/cm in pure Ge and E∼20 V/cm in pure Si), the energy of a significant number of carriers exceed this threshold energy. Once this happens, the impact-ionization process can change the relative concentration of excitons and free carriers; the equilibrium law of mass action is no longer satisfied. Calculations of exciton concentration (for fixed carrier concentration) as a function of temperature and applied-field strength show that a sudden drop in exciton concentration occurs when electric fields exceed a temperature-dependent critical field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.