Abstract

Abstract The variations of inlet environment parameters can make significant effects on the compressor performance. This paper aims to investigate the effects of inlet total pressure and total temperature changes on the rated condition performance of a nine-stage HPC. Different cases of total pressure and total temperature boundary conditions at this compressor inlet are studied by 3-D numerical simulations with experimental validations. The numerical results confirm that the variations of inlet total pressure and total temperature make different effects on the rated condition performance of compressor. The overall performance parameters, such as the corrected mass flow and isentropic efficiency, will increase with inlet total pressure increasing and decrease with inlet total temperature increasing by different change rules. The flow similarity is also investigated by comparing the calculated results of critical quantities in different cases. The results indicate that the rising inlet total pressure can increase the Reynolds number and it is beneficial to reduce the viscous influence so that it is available to improve the performance; the rising inlet total temperature can decrease both the specific heat ratio and Reynolds number so that it will lead to the compressor performance decline inevitably.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.