Abstract

The impact induced dynamic response and the failure behavior of aircraft structures continues to be a critical aeronautical engineering challenge in order to improve the passenger survivability after aircraft. It is the objective of this special issue to provide a review of the work at the University of Naples Federico II on failure modes of composite materials and structures and on techniques for impact detection and damage characterization. This review consists of six papers, starting with a review of the bird impact process and the validation of the smooth particle hydrodynamics (SPH) impact model for aircraft structures, followed by a paper on the design of a passenger seat with improved safety while minimizing cost and weight in compliance with prescribed certification rules. Two papers are dedicated to the description of the impact behavior of composite laminates and of the ultrasound propagation in composite laminates. An additional paper presents an overview of experimental techniques for impact detection and of a novel method combining deep learning and wave propagation-based methods to sense impacts that induce excitation spectra at low (modal) or medium-high frequency range through piezo-patches installed on the structure. The final paper provides an overview of the analytical and numerical modelling techniques for guided wave propagation studies and strategies for the implementation of Structural Health Monitoring systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call