Abstract

Finite element analysis is used to study the tensile and shear stresses at the interface between impact ice adhering to a rotating airfoil and the metal airfoil surface. A simple rotating beam-ice structure is used to obtain basic understanding of stress distribution in the ice. Calculations show that shear stresses increase linearly with ice thickness and tensile stresses tend to zero for a fully bonded surface. When shear stresses exceed the ultimate strength, adhesive failure occurs and tensile stresses are developed in the unbonded ice, resulting in tensile failure of the impact ice. A second model is used to study the OH-58 tail rotor with a measured ice profile. Ice shedding predictions are compared to the resulting data using a statistical structural analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call