Abstract

AbstractIn this work the variation in Izod impact strength with spatial location was examined for injection molded long glass fiber polypropylene composite plaques. These plaques were fabricated at different sets of processing conditions, with injection speed and melt temperature being varied. By carefully machining test specimens, fifteen different plaque locations both in the in‐flow and cross‐flow directions were tested. The part morphology was described with the use of characteristic layer thickness ratios, i.e., the shell and the core to part thickness ratios, which were measured experimentally. It was shown that the variation in impact strength with sample location strongly correlates to shell to part thickness ratio. In addition, it was observed that different failure mechanisms exist for different fiber orientations, i.e., for fibers oriented transversely to the crack plane or on the crack plane itself. Scanning electron microscopy (SEM) of the fracture surface was conducted and the results supported our findings on the microstructural level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.