Abstract

Velocity distributions are determined for ejecta from 14 experimental impacts into regolithlike powders in near-vacuum conditions at velocities from 5 to 2321 m/sec. Of the two powders, the finer produces slower ejecta. Ejecta include conical sheets with ray-producing jets and (in the fastest impacts at V imp ⪸ 700 m/sec) high-speed vertical plumes of uncertain nature. Velocities in the conical sheets and jets increase with impact velocity (Sect. 6). Ejecta velocities also increase as impact energy and crater size increase; a suggested method of estimating ejecta velocity distributions in large-scale impacts involves homologous scaling according to R/ R crater, where R is radial distances from the crater (Sect. 7). The data are consistent with Holsapple-Schmidt scaling relationships (Sect. 8). The fraction of initial total impact energy partitioned into ejecta kinetic energy increases from around 0.1% for the slow impacts to around 10% for the fast impacts, with the main increase probably at the onset of the hypervelocity impact regime (Sect. 9). Crater shapes are discussed, including an example of a possible “frozen” transient cavity (Sect. 10). Ejecta blanket thickness distributions (as a function of R) vary with target material and impact speed, but the results measured for hypervelocity impacts agree with published experimental and theoretical values (Sect. 11). The low ejecta velocities for powder targets relative to rock targets, together with the paucity of powder ejecta in low-speed impacts ( < 1 projectile mass for V imp ≈ 10 m/sec) enhance early planetary accretion effeciency beyond that in some earlier theoretical models; 100% efficient accretion is found for certain primordial conditions (Sect. 12).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.