Abstract
Sandwich composites are prone to delamination and fracture during service when exposed to external low-velocity impact. One hindrance to overcome before a broader deployment of sandwich composites is the issue of impact energy assessment (IEA). To promote the solution to this issue, an ensemble deep learning approach is proposed in this study. The approach comprises data expansion, series-to-image conversion, and convolutional neural networks (CNN). The data expansion is implemented using vertical average interpolation. The enhanced data are transformed into images via the Gramian angular summation field to build an image dataset for the CNN model. To validate the developed ensemble approach, hammer-dropping impact experiments on the honeycomb sandwich composites are carried out based on the piezoelectric wafer active sensor network and electromechanical impedance measurement. Accuracy, precision, recall, and F1-score indicators are introduced to evaluate the ensemble approach performance. The above indicator values are all above 0.9600, demonstrating the effectiveness of the proposed ensemble approach in settling the IEA issue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.