Abstract
Transitional metals, as vanadium, are known to exert noxious effects by generating oxidative stress. Addition of antioxidants in the diet could decrease the cytotoxic effect related to the oxidative stress. The present study, carried out in Wistar rats, is a contribution to the evaluation of protective effects of green tea Camellia sinensis, which is known to be rich in antioxidant compounds (polyphenols...). Rats were divided into four groups: (C) was control, (V) was given ammonium metavanadate (AMV), (TH) was given herbal tea as drink (66 g/l) and TH + V was given tea and metavanadate. Group (TH) was given herbal tea one month before vanadium treatment. Metavanadate was daily i.p. injected (5 mg NH 4VO 3/kg body weight) for 10 days. (C) and (TH) groups received i.p. injections of 0.9% NaCl during the same period. Changes in lipid peroxidation levels (TBARS) in kidney, liver and testes, serum concentrations of vitamins E and A and superoxidismutase (SOD) and catalase (CAT) activities in blood cells were determined. One month pre-treatment with green tea, followed by 10 days of treatment (TH) did not change TBARS in liver and testes as compared to controls, but induced a clear decrease of TBARS in kidneys. Intraperitoneal administration of AMV to rats (V) induced a time-dependant increase of TBARS in kidney, liver and testes that was lowered in rats (V + TH) drinking tea. Vitamin E concentrations were found to be drastically decreased from day 1 to 10 in rats (V). Vitamin A concentration was decreased at day 10 only. Drinking tea lowered AMV inhibitory effects in rats (V + TH), and conversely an increase of vitamins A and E concentrations were found at day 10. SOD and catalase activities were found increased in the blood cells from day 1 to day 5 and conversely decreased at day 10. In contrast, associated to green tea, AMV did not affect SOD and catalase activities compared to controls. To cite this article: A. Soussi et al., C. R. Biologies 329 (2006).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.