Abstract

The use of composite materials has expanded significantly across civil, aerospace, and marine structures in both new designs and retrofits. The performance benefits from composites–typically, weight reduction with increased strength, corrosion resistance, and improved thermal and acoustic properties–are challenged by a host of failure modes whose genesis and progression aren’t yet well understood. As such, structural health monitoring (SHM) plays a key role for in-situ assessment for the purposes of performance/operations optimization, maintenance planning, and overall life cycle cost reduction. In this work, arrays of fiber Bragg grating optical strain sensors are embedded into a pre-preg composite specimen that was designed by surrogate finite element model simulation, and will be subjected to both low-energy (non-damaging) impacts at various locations and high-energy damaging impacts at a known location. The impactor was designed along with the panel specimen for very specific energy levels, strain frequency, and strain amplitude response. Results from SHM algorithms developed via hypothesis testing are demonstrated on blind impact tests in order to determine the efficacy of embedded fiber Bragg grating arrays for assessing structural health of such composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.