Abstract

Abstract This paper examines the potential of low-cost thermoplastic fibres in improving the impact damage resistance and damage tolerance of thermoset (glass-epoxy) composites. Polypropylene (PP) fibres, commodity fibres without any surface modifications, have been incorporated at tow-scale with the aid of air jet commingling process. Glass-PP hybrid yarns with varying proportion of PP fibres (0–35%) are converted into several non-crimp cross-ply laminates and a plain-woven laminate. Damage resistance in terms of damage area and depth are assessed for low energy (20–50 J) as well as high energy (500 J) drop-weight impacts; damage tolerance is assessed through Compression after Impact (CAI) tests. Overall density of the composite laminate has reduced by 16% due to the introduction of PP fibres; at the same time total absorbed energy has increased by 22% during a high velocity impact test due to a toughing mechanism by PP fibres. Non-crimp laminates absorbed more energy at low velocity impacts in comparison to woven laminates, possibly due to extensive tow-level delaminations. On the other hand, a much larger dent depth was observed in the woven laminate after low energy impact. Compression after Impact (CAI) tests indicated that woven laminates retained 83% of compressive strength while non-crimp laminates retained 50–60%, depending on proportion of thermoplastic fibres, and standard glass fibre laminates retain around 45%. Fibre damage has been significantly reduced during impact loading in case of hybrid laminates due to the cushioning effect offered by lower modulus PP fibres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.