Abstract
The stability of friction disc could be seriously affected by the tooth surface damage due to poor working conditions of the wet multi-disc brake in heavy trucks. There are few current works focused on the damage of the friction disc caused by torsion-vibration impacts. Hence, it is necessary to investigate its damage mechanisms and evaluation methods. In this paper, a damage mechanism description and evaluation method of a friction disc based on the high-speed photography and tooth-root stress coupling is proposed. According to the HighSpeed Photography, the collision process between the friction disc and hub is recorded, which can be used to determine the contact position and deformation. Combined with the strain-stress data obtained by the strain gauge at the place of the tooth-root, the impact force and property are studied. In order to obtain the evaluation method, the damage surface morphology data of the friction disc extracted by 3D Super Depth Digital Microscope (VH-Z100R) is compared with the impact force and property. The quantitative relationships between the amount of deformation and collision number are obtained using a fitting analysis method. The experimental results show that the damage of the friction disc can be evaluated by the proposed impact damage evaluation method based on the high-speed photography and tooth-root stress coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.