Abstract
The dynamic behavior of a thin-walled hollow sphere colliding onto a rigid wall has been studied by experiments, numerical simulation and analytical modeling, as reported in our previous papers. In the present paper, the impact crushing of metallic thin-walled hollow spheres onto rigid plates and the subsequent rebound are analyzed using finite element method. The effects of hollow sphere’s thickness-to-radius ratio, the material properties and the impact velocity on the dynamic responses are systematically investigated. The transition from axisymmetric dimpling to non-axisymmetric lobing is found to depend on the relative thickness of spheres and impact velocity; while the coefficient of restitution almost merely depends on impact velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.