Abstract

With advantages of high efficiency and low cost, DTH hammer drilling has been highly applied in various drilling projects. When drilling in unconsolidated formations, it is prone to drilling accidents such as drilling tools sticking or burying. Thus, a bidirectional pneumatic DTH hammer is designed to drill boreholes using forward impact and release sticking drilling tools using backward impact. With a floating gas distribution mechanism, impact strokes of the DTH hammer piston can be changed when flat keys are in a different position of the key grooves on the gas distribution shaft. In drilling mode, the piston has a larger impact stroke and can impact the anvil at high speeds to drive the bit breaking rocks. When drilling tools become stuck, by changing to a smaller impact stroke, the piston can impact backward on the gas distribution valve to break rocks above the DTH hammer so sticking drilling tools can be released. According to the structure and working principle of the bidirectional pneumatic DTH hammer, a physical model based on the pneumatic transmission circuit is established; then, a simulation model is built with pneumatic transmission module components in software of SimulationX 4.1 student version. Piston velocities, displacements, and impact energy are analyzed, with main factors including piston mass, total weight of the DTH hammer, compressed air pressure, and backward impact stroke being considered. Analysis results show that working characteristics of the DTH hammer are fairly affected by piston mass and compressed air pressure. Based on the changing laws of the impact frequency, peak of impact velocity, and impact energy, a piston mass of 18 kg, total weight of 125 kg, gas source pressure of 2.2 MPa, and lifting distance of 60 mm for backward impact were recommended. To verify the performance of the bidirectional pneumatic DTH hammer, field experiments were carried out in the gravel stratums. The bidirectional DTH hammer was in good working condition and the maximum drilling rate can reach up to 1.5 m/min. By lifting the DTH hammer away from the bottom of the borehole and pumping compressed air, the DTH hammer piston could achieve a high frequency backward impact. There are no drilling tools’ sticking or burying accidents in the drilling experiments. The bidirectional pneumatic DTH hammer can effectively drill boreholes in loose formations and deal with drilling tools’ sticking or burying accidents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call