Abstract
Considering the elastic-plastic deformation, the wave propagations and energy transmissions of the one-dimensional three-segment composite granular chain are studied. The axial symmetry model for elastic-perfectly plastic materials is built by using the finite element method. Six materials with different yield strengths are selected for the adjustable segment. The results show that the repeated loading and unloading behaviors, as well as the wave propagations in the elastic-plastic granular chain, are complex and significantly different from those in the purely elastic granular chain. The yield strength of the granular materials in the adjustable segment has significant effects on energy dissipation and wave velocity, which could be used to design the impact buffer. The studies show that taking lower yield strength for the adjustable part than the non-adjustable part, the energy dissipation could be increased, and the wave velocity could be reduced, then the arrival time of the impact waves could be delayed. These characteristics of the elastic-plastic granular chain could be used to design metamaterials for impact absorbers in impact protection.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.