Abstract

In this study, impact behavior of triggered and non-triggered tubes with and without auxetic filler is examined using numerical methods. Material properties of tubes made of aluminum alloy and auxetic lattices utilizing ABSplus plastics are determined using tensile tests. Finite element analyses are performed using LS-DYNA software at 5 m/s impact velocity. Two different trigger shapes are suggested and compared each other and discussed the advantages and disadvantages over non-triggered tubes. For these loading conditions, trigger mechanism provides lower peak forces and higher crash force efficiency (CFE), but lower specific energy absorption (SEA). In addition, the effects of using auxetic fillers in these triggered tubes are investigated in terms of crashworthiness characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.